Morphological analysis of H i features - III. Metric space technique revisited

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Scale Morphological Analysis of SDSS DR5 Survey Using the Metric Space Technique

Following novel development and adaptation of the Metric Space Technique (MST), a multi-scale morphological analysis of the Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5) was performed. The technique was adapted to perform a space-scale morphological analysis by filtering the galaxy point distributions with a smoothing gaussian function, thus giving quantitative structural information on ...

متن کامل

φ−H Contraction in Fuzzy Metric Space

In this paper, we prove fixed point theorem for φ − H contraction in fuzzy metric space in sense of George and Veeramani.

متن کامل

H infinity Analysis Revisited

—This paper proposes a direct, and simple approach to the H∞ norm calculation in more general settings. In contrast to the method based on the Kalman–Yakubovich–Popov lemma, our approach does not require a controllability assumption, and returns a sinusoidal input that achieves the H∞ norm of the system including its frequency. In addition, using a semidefinite programming duality, we present a...

متن کامل

A Partition Metric for Clustering Features Analysis

A new distance function to compare arbitrary partitions is proposed. Clustering of image collections and image segmentation give objects to be matched. Offered metric intends for combination of visual features and metadata analysis to solve a semantic gap between low-level visual features and high-level human concept.

متن کامل

Distance Metric Learning Revisited

The success of many machine learning algorithms (e.g. the nearest neighborhood classification and k-means clustering) depends on the representation of the data as elements in a metric space. Learning an appropriate distance metric from data is usually superior to the default Euclidean distance. In this paper, we revisit the original model proposed by Xing et al. [24] and propose a general formu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monthly Notices of the Royal Astronomical Society

سال: 2010

ISSN: 0035-8711,1365-2966

DOI: 10.1111/j.1365-2966.2010.16489.x